Induced trees, minimum semidefinite rank, and zero forcing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero forcing parameters and minimum rank problems

Abstract. The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a 1 graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by 2 G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive 3 semidefinite zero forcing number Z+(G) is introduced, and ...

متن کامل

Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs

Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combinatorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a...

متن کامل

Zero forcing sets and the minimum rank of graphs ∗

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often e...

متن کامل

Minimum rank and zero forcing number for butterfly networks

The minimum rank of a simple graph G is the smallest possible rank over all symmetric real matrices A whose nonzero off-diagonal entries correspond to the edges of G. Using the zero forcing number, we prove that the minimum rank of the r-th butterfly network is 1 9 [ (3r + 1)2r+1 − 2(−1)r ] and that this is equal to the rank of its adjacency matrix.

متن کامل

Ela Note on Positive Semidefinite Maximum Nullity and Positive Semidefinite Zero Forcing Number of Partial 2-trees

The maximum positive semidefinite nullity of a multigraph G is the largest possible nullity over all real positive semidefinite matrices whose (i, j)th entry (for i 6= j) is zero if i and j are not adjacent in G, is nonzero if {i, j} is a single edge, and is any real number if {i, j} is a multiple edge. The definition of the positive semidefinite zero forcing number for simple graphs is extende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2012

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2012.5.411